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Abstract: A method is described to solve the time-dependent incompressible Navier-Stokes equations with finite
differences on curvilinear overlapping grids in two or three space dimensions. The scheme is fourth-order accurate
in space and uses the momentum equations for the velocity coupled to a Poisson equation for the pressure. The
boundary condition for the pressure is taken as V-u = 0. Extra numerical boundary boundary conditions are chosen
to make the scheme accurate and stable. The velocity is advanced explicitly in time; any standard time stepping
scheme such as Runge-Kutta can be used. The Poisson equation is solved using direct or iterative sparse matrix
solvers or by the multigrid algorithm. Computational results in two and three space dimensions are given.



1 Introduction

A scheme is described for the accurate solution of the incompressible Navier-Stokes equations on regions with com-
plicated geometry in two and three space dimensions. The approach uses fourth-order accurate finite differences on
curvilinear overlapping grids. The momentum equations for the velocity, u, are solved together with the Poisson
equation for the pressure, p. One key element of the method is the choice of boundary conditions. A boundary
condition for the pressure is required as well as extra numerical boundary conditions for the fourth-order method.
The boundary condition for the pressure is taken as V- u = 0. It will be argued that this is the natural boundary
condition for p. Numerical boundary conditions are chosen by applying the equations on the boundary and by setting
the normal derivative of V - u equal to zero on the boundary. An overlapping grid also requires boundary conditions
on those boundaries where one component grid overlaps another. Solution values at these points are obtained by
interpolation. This is the standard approach and is described in more detail later in the paper.

The velocity is advanced explicitly in time with a method of lines approach. Any standard time-stepping scheme
such as a Runge-Kutta or multi-step method can be used. At each stage in the time step the velocity is first updated
and then the pressure is found by solving the Poisson equation. The overall accuracy in time is equal to the accuracy
of the chosen time-stepping algorithm. The fourth-order accurate approximation to the Poisson equation is solved
either with a direct sparse matrix solver, an iterative sparse matrix solver or with the multigrid algorithm. Some care
is required to solve the Poisson equation since the system is usually singular (the pressure is only determined up to a
constant). Numerical results in two and three space dimensions show the accuracy of the scheme. The stability and
accuracy of the scheme described in this paper are analysed in [18], where a general principle for deriving numerical
boundary conditions is also presented.

1.1 Background

The initial boundary-value problem for the incompressible Navier-Stokes equations is

w+ (u-V)u+Vp—vAu—-f = 0
Veu = 0 xe (1)
B(u,p) =0 x € 00
u(x,0) = ug(x) att=0

Here p is the pressure and v the kinematic viscosity, v > 0. The domain Q lies in R™ where ng4, the number of space
dimensions, is 2 or 3. There are ng boundary conditions denoted by B(u,p) = 0. On a fixed wall, for example, the
boundary conditions are u = 0. System (1) will be called the velocity-divergence form of the equations.

There are alternative formulations to the velocity-divergence equations (1). By taking the curl of the momentum
equations, a system for the vorticity w = V x u and velocity results which does not depend on the pressure. In two
space dimensions this system is particularly convenient as it can be written in terms of two scalar functions, a stream
function v and the one nontrivial component of the vorticity. In three space dimensions many of the advantages of
the vorticity formulation are lost and it becomes more attractive (in applying boundary conditions for example), to
use velocity and pressure variables.

An alternative initial-boundary value problem, called the velocity-pressure formulation, is

w+ (u-V)u+Vp—vAu—-f = 0
Ap+Vu-uz+Vv-uy+Vw-u, —-V-f = 0 x € (2)
B(u,p) = 0
V-u = 0} x € 00N
u(x,0) = up(x) att=0

This is the form of the equations that will be discretized in the method described in this paper. The pressure equation
is derived by taking the divergence of the momentum equation and using V - u = 0. For this latter system an extra
boundary condition is required in order to make the problem well-posed. The condition V - u = 0 for x € 99 is
added as the extra boundary condition. Further remarks on this choice are given later.

Fourth-order accurate difference methods require extra (numerical) boundary conditions. The choice of these
numerical boundary conditions is crucial to the creation of a stable and accurate scheme. For the scheme given
here, boundary conditions are required to determine u and p at two lines of fictitious (ghost) points. Often, a
useful technique for deriving boundary conditions for higher-order methods is to apply the equation (and its normal
derivatives) on the boundary. Numerical boundary conditions are thus derived by applying the momentum equations



and the pressure equation on the boundary. In addition the normal derivative of the divergence is specified on the
boundary.

wu+(u-V)u+Vp=vAu+f = 0 x€N
Numerical BC’s:{ Ap+Vu-u; +Vv-u, +Vw-u, -V-f = 0 x €90 (3)
2(V-u) = 0 x€09

On the second fictitious line the pressure and the tangential components of the velocity are extrapolated. There is
also a second-order accurate version of this method that does not require these extra numerical boundary conditions.

1.2 Discussion

It is appropriate, perhaps, to make some remarks regarding the choice of V - u = 0 as the extra boundary condition
for the velocity-pressure formulation. The extra boundary condition required by the velocity-pressure formulation
should satisfy three conditions. (i) It should be chosen so that (2) (plus compatibilty constraints) is well posed. (ii) It
should be consistent with the original formulation (1). (iii) It should be chosen so that formulation (2) is equivalent
to (1). These three conditions are satisfied by the boundary condition V -u = 0, which, although it does not look like
a pressure boundary condition, is in some sense the natural extra condition to add. It is not hard to show that (2)
is equivalent to (1) at least for solutions that are sufficiently smooth.

The question of what boundary condition to use for the pressure equation has led to much discussion, see for
example [11] and [20]. These papers consider, for example, whether it is appropriate to use the tangential or normal
component of the momentum equation on the boundary as a boundary condition for the pressure equation. Gresho
and Sani [11] present an extended discussion of pressure boundary conditions where they conclude that the most
appropriate condition is the use of the normal component of the momentum equation on the boundary. It appears,
however, that essentially all methods also impose (implicitly or explicitly) V-u = 0 on the boundary. Often the fact
that this condition is applied is not emphasized. On staggered grids, for example, the condition occurs naturally. In
related work Karniadakis et.al. [20] consider boundary conditions for a projection method for the spectral element
method. They use the normal component of the momentum equation but find that in this boundary condition they
must write Auas V(V-u) =V x (V x u) and set V(V -u) = 0.

It seems that much of the confusion goes away if one realizes that the essential boundary condition for the pressure
equation is V - u = 0. This is the natural condition to add so that the velocity-pressure formulation is equivalent to
the velocity-divergence formulation. The velocity-pressure formulation is not equivalent to the velocity-divergence
formulation if the extra boundary condition is instead taken as the normal component of the momentum equation
for there is nothing to stop the divergence from becoming nonzero in the domain if it is nonzero on the boundary.
Indeed this later boundary condition alone adds no new information and would lead to an under-determined system,
as pointed out by Strikwerda [25]. However, from a discrete point of view it seems appropriate to apply the momentum
equation on the boundary as an extra numerical boundary condition. This boundary condition, combined with the
(essential) boundary condition V -u = 0 then leads to a boundary condition on the normal derivative of the pressure
that can be conveniently used when solving the discrete Poisson equation for the pressure.

The advantages of using higher-order accurate methods for the solution of the incompressible Navier-Stokes
equations (or many other PDEs) are by now well known. On periodic regions, Fourier spectral methods are now
widely used. Fourth-order methods, although not as accurate as spectral methods, still offer significant advantages
over second-order methods. Applying a high-order method on a complicated region is a difficult task. One major
difficulty is in the generation of a grid for the region. The grid must be smooth enough so that errors associated
with variations in the grid do not over-whelm the errors in the method. A second difficulty is developing a high-
order method that works in general regions. There are a number of approaches to generating grids for complicated
geometries. These approaches include multi-block patched grids [26], unstructured triangular (tetrahedral) grids [2]
and overlapping (overlaid) grids [24][8]. With multi-block patched grids one can use higher-order finite-difference
methods or the spectral element method [20]. Higher order finite element or finite-volume methods can be used on
unstructured grids. Each grid generation approach has its own advantages and disadvantages. Unstructured grids
are very flexible but they are not as efficient as structured grids, moreover the problem of creating a good triangular
grid to resolve viscous boundary layers is still an open question. Multi-block patched grids are efficient but less
flexible - the problem of automatically dividing a three dimensional region into blocks is still a problem. Overlapping
grids represent a compromise; they are more flexible than patched grids but are still highly structured.

In this paper an approach is presented that uses overlapping grids and high-order finite differences. Overlapping
grids can be used to create smooth grids on complicated regions. The grid construction program CMPGRD is
used to create overlapping grids in two and three space dimensions [8]. An overlapping grid consists of a set of
component grids which cover a region and overlap where they meet. Interpolation is used to match the solution



between component grids. As each component grid is logically rectangular it is straight forward to apply high-
order finite difference methods in an efficient manner. Overlapping grids can be created that are free from artificial
coordinate singularities. For example, the singularities at the poles of a sphere associated with the standard spherical
polar coordinates can be avoided by using two (or more) overlapping patches to cover the sphere [17]. A less severe
form of singularity appears in multi-block patched grids where the metric coefficients are sometimes discontinuous
across block boundaries. Overlapping grids can avoid these types of singularities, thus making it much easier to get
high-order accuracy.

High-order accurate methods on overlapping grids have be used successfully for a variety of problems. In [6], for
example, Browning has used fourth and six-order methods on overlapping grids to solve the shallow water equations
on a sphere. In [8] [29] fourth-order accurate methods are used to solve elliptic problems and nonlinear eigenvalue
problems on overlapping grids.

In related work, the three-dimensional incompressible Navier-Stokes equations have been solved on overlapping
grids by Kiris et.al.[22]. They use the artificial compressibility method and second-order accurate differences to
compute the flow in an artificial heart. These computations show some of the advantages of using overlapping grids
for computing flows with moving boundaries in complex three-dimensional regions. Tu and Fuchs also solve the
three-dimensional incompressible equations on overlapping grids for flows in internal combustion engines. They use a
second-order accurate method coupled with a multigrid algorithm [27]. Recently Wright and Shy [30] have described
a method for multi-block grids where they are concerned with conservation at the interface boundaries. The approach
described in this paper has similarities to the well-known projection method, orginally developed by Chorin [9]. See,
for example, the article by Bell, Colella and Glaz [3] for a discussion of projection methods.

2 Spatial Discretization

The equations defining the velocity-pressure formulation are discretized in space using finite-difference methods on
overlapping grids. An overlapping grid consists of a set of logically rectangular grids that cover a region and overlap
where they meet. Interpolation conditions are used to connect the solutions on different component grids. Associated

with each component grid (numbered k =1,2,...,n,) there is a transformation, dj, that maps the unit cube, with
coordinates denoted by r = (r1,72,73), into physical space, x = (z1, T2, 3),
x(r) = dg(r) .

Each component grid, Gy, consists of a set of grid points,

Gk = {Xi,k | 1= (ilai2;i3) Nm,a,k — 2<i,m < Nm,bk T 2, m= 172;3} .
Two extra lines of fictitious points are added for convenience in discretizing to fourth-order. Boundaries of the
computational domain will coincide with the boundaries of the unit cubes, i, = N gk OF ¢ = Ny p i for m =

1,...,nq. Henceforth, the subscript k, denoting the component grid, will normally not be written.
Let U; and P; denote the discrete approximations to u and p so that

U;ru(x;) , P=px).

Here U; = (Uy;,Us4, Us;) is the vector containing the cartesian components of the velocity. The momentum and
pressure equations are discretized with fourth-order accurate central differences applied to the equations written in
the unit cube coordinates, as will now be outlined. Define the shift operators E,,, and E_,, in the coordinate
direction m by

Uilil,iz,is if m=1

EinUi=< Uiipt14, ifm=2 (4)

Ui1,i2,i3:|:1 ifm= 3

and the difference operators
Dipp = Eip—1
D:I:m1,:|:m2 = E:tm1 E:I:mg —-1.

Let D4y, , Dar, r, , Dag,, and Dy, .. denote fourth order accurate derivatives with respect to r and x. The derivatives
with respect to r are the standard fourth-order centred difference approximations. For example

du D U = (—E2,, +8E4m —8E_p + E?))U;

Ory, ~ Am T T 12(Arm)
Pu U (—E2,, + 16E;,, — 30 + 16E_,, — E2 U,
grz2, ~ T Armrm 24(Ar )2



where Ary, = 1/(Np,p — Nm,q)- The derivatives with respect to x are defined by the chain rule.

Ou or, Ou ) ory,
O zn: O Orn Dz, Ui i= O,

0%u or, Or 8%r,, Bu
or2, nz 0%, 0T, 6rnrl Z dx2, dry,

~ Di . U, Z or, arl 2 D gy Ui +Z (Psc., grn ) D4, Ui

0T O,

D4rn Uz

The entries in the Jacobian matrix, Ory, /0z,, are assumed to be known at the vertices of the grid; these values are

obtained from the grid generation program, CMPGRD. The spatial discretizations of the momentum and pressure
equations can thus be written as

d
EUZ' + (U, . V4)U, + V4P, —vALU; —f;, = 0
nd
AyP; + Z VUi D, Ui =Vys-f; = 0
m=1
where
VuU; = (Dug,Us, Dz, Uiy Dyy, Us)
Vi-U; = Dyg, Ui+ Dyg,Us i + Dyg,Us ;
AU; = (D4z1z1 + D4z2z2 + D4z3$3)Ui .

In order to help keep the discrete divergence small, an additional term proportional to V4 - U will be added to the
pressure equation. This will be described later in the paper. It can be seen that the discretization of the equations
is accomplished in a straight-forward manner with overlapping grids. However, the remaining steps of setting up the
matrix for the pressure equation and solving the boundary conditions are more difficult.

Discretizing the Boundary conditions: For the purposes of this discussion assume that the boundary con-
dition for u is of the form u(x,t) = up(x,t) for x € 9Q. More general boundary conditions on u and p, such as
extrapolation conditions, can also be dealt with although some of the details of implementation may vary. At a
boundary the following conditions are applied

Uz' — up (X,) = 0
Vs-U; = 0
Dyp(V4-U;) = 0 for 7 € Boundary
%Ui + (U, . V4)U, + V4P, — vALU; — = 0
AgP;+ 30 VyUni- D4y, Ui = V4 -f; = 0
4 _
t, - % EZIIJD - 8 } for i € 2nd fictitious line

where t,, p = 1,nq — 1 are linearly independent vectors that are tangent to the boundary. In the extrapolation
conditions either D, or D_,, should be chosen, as appropriate. Thus at each point along the boundary there are
12 equations for the 12 unknowns (Uj;, P;) located on the boundary and the 2 lines of fictitious points. Note that
two of the numerical boundary conditions couple the pressure and velocity. In order to advance the velocity with an
explicit time stepping method it convenient to decouple the solution of the pressure equation from the solution of
the velocity. A procedure to accomplish this is described in the next section on time stepping.

3 Time stepping

A method of lines approach is used to solve the the equations in time. After discretizing the equations in space one
can regard the result as a system of ordinary differential equations

d
ZU=F(U,1) (5)



where the pressure is considered to be a function of the velocity, P = P(U). The equations are integrated using an
explicit time-stepping scheme (implicit methods, such as the fractional-step methods [21][20], could also be used).
Typical explicit time-stepping procedures such as Runge-Kutta methods or multi-step methods advance the solution
in time by solving one or more sub-steps of the form

U(t) = U(x) + a At F(U(t — At),t — At) (6)

where U(x) is some known function depending on the solution at previous time steps. Assume that at time ¢ — At
the values for U(t — At) and P(t — At) are known at all nodes (interior, boundary and fictitious nodes) and that
the values of F(U(t — At),t — At) are known at all interior nodes. Here are the steps to advance one sub-step and
determine these values at time ¢.

Step 1: Determine U(¢) at all interior nodes using the sub-step formula (6).

Step 2: Determine the velocity, U(¢) at all boundary and fictitious points by solving the following boundary
conditions

Uz' (t) - U.B (xz; ) = 0
U = 0 _
D4n(V4 ) = 0 for ¢ € Boundary (7
by {%Ui(t) + (U;i(t) - Va)U;(t) + V4P (t) — vALU;(t) — f } - 0
ty "Dim(Ui ) = 0} for ¢ € Second fictitious line

where 4 = 1,n4—1 . Only the tangential components of the momentum equations are used in this step. The pressure
at time ¢ is not known yet but the numerical boundary condition requires knowledge of t, - V4P(t). This quantity
is approximated by extrapolating the pressure in time giving an approximate value denoted by P*(t). Since this
extrapolated value for the pressure on the boundary is only used as a numerical boundary condition one can expect
from the theory that the overall accuracy and stability of the method will not be affected [18]. At each point on the
boundary equation (7) gives 9 equations for the 9 unknown values of the velocity at the boundary and two fictitious
points.

Step 3: Solve the pressure equation with the remaining boundary conditions

AyPi(t) = =31 VaUp,;- Das, U; + V4 - £i(t) i € Interior and boundary points
n- V4 Pi(t) =—n(wm+(()m)(%ﬁ&&@—%”iEMm%WWMS (8)
Di.Pt) = 0 i € second fictitious line

The velocity, U(t), is known at all points and thus the right hand sides in (8) can be determined. The numerical
boundary condition that came from the normal derivative of the momentum equation appears here as a Neumann
boundary condition for the pressure.

Step 4: Given the pressure, P;(t) its gradient can be computed at all interior points and thus F(U(t),t) can be
determined at all interior nodes. This completes the time step.

In summary:

0. Given U(t — At) and P(t — At) at all nodes and F(U(t — At),t — At) at interior nodes:
1. Compute U(t) at all interior nodes by making a time step.

2. Compute U(¢) at boundary and fictitious points using some of the boundary conditions

3. Compute the right hand side to the pressure equation and the the right hand side to the pressure boundary
condition and then solve for pressure everywhere, P(t).

4. Compute F(U(t),t) at interior nodes.

Solving the Pressure Equation The discretized pressure equation takes the form of a linear system of equa-
tions:
AP =F (9)



Here P is the vector containing the values of P; at all grid points. Normally the matrix A will be singular because
the pressure is only known up to an arbitrary constant. (This may not be true if an inflow or outflow boundary
condition sets the level of the pressure). When A is singular, the discrete system will only have a solution if F is
in the column space of A, or equivalently if F is orthogonal to the null-space of A*. This compatibility condition is
the discrete analogue of the solvability condition for Laplace’s equation with Neumann boundary conditions which
states that a necessary condition for

Ap = f x€ (10)
0
mP = 9 x € 00

to have a solution is that

/Qfdx:/mgds.

With some numerical methods the discrete compatibility condition is automatically satisfied. This is true, for
example, with methods using staggered grids. Abdallah[1] shows how to design a scheme on non-staggered grids so
that the discrete compatibility condition is exactly satisfied. In the approach presented here the discrete compatibility
condition is not exactly satisfied (although it should be satisfied to fourth-order accuracy). It has been found that a
good approach to solving (9) is to solve the augmented system

alla]=15] a

where r = [1,1,...,1]! is the right null vector of A. Although the matrix A is singular the above augmented system
is nonsingular. If 1 denotes the left eigenvector of A, (which never has to be calculated) then the solution to the
augmented system satisfies

I'F
AP = F-ar (13)
r'P = § (14)

Equation (13) has a solution because the right hand side is orthogonal to 1. The general solution to (13) is equal to
a particular solution plus an arbitrary constant times the right null vector. Equation (14) determines this arbitrary
constant. From (12) it can be seen that a measures the degree to which the discrete compatibility condition is
satisfied; one can expect that a = O(h*) in the present case. The value chosen for 3 sets the arbitrary constant in
the pressure.

The discrete pressure equation (11) is solved in various ways using sparse matrix solvers. Direct sparse solvers are
used for small problems and iterative solvers, such as bi-conjugate gradient squared, GMRES, or multigrid [16][15]
are used for larger problems.

4 Some details of the implementation

There are a number of implementation details that must be considered when writing a general program for overlapping
grids. These include, for example, the discretization of the equations near the boundaries (especially corners and
edges), interpolation, and the initialization of the solution. In this section we discuss how some of these problems
were addressed. Fortunately, since our grids are free of coordinate singularities, it is not necessary to deal with that
difficulty.

4.1 Interpolation Points:

The values on the boundary of a component grid, ki, that overlap a second component grid ks, are obtained by
interpolation. Interpolation is performed in the unit cube coordinates of grid ko using a tri-quartic interpolation
with a 5 x 5 x 5 stencil of points. In Chesshire et. al. [8] it was shown how to choose the order of accuracy of the
interpolation formula to be consistent with the discretization of the PDE.



To be specific suppose that

Xi bk, = Point on grid k; to be interpolated from grid ks
vl = d,;; (Xiy,k,) = position of x;, x, in the unit cube of grid &,
i2,k2 = index of the lower corner of the stencil to be used for interpolation
r(is, k2) = unit square coordinates of the point (iz, k2)

Recall that x = d,(r) is the mapping from the unit cube onto the region covered by component grid k». The
grid generation program CMPGRD supplies the coordinates r! of each point that needs to be interpolated. The
interpolation is defined in terms of the Lagrange polynomials

H;;%(S —J)
q(s) = m
J#i

Let s = (81,82, ..., 8n,) 7 be the normalized position of the point to be interpolated relative to the corner of the stencil
of interpolation points:
T = Tm (i2, k2)

Sm:T, m:1,2,...,nd.

The tri-quartic Langrange interpolation formula is then

Uik = E ¢, (51) E j,(52) E qjs (83) Uist (1,2 ,ds) ke -

j1=0 Jj2=0 Jj3=0

A standard utility routine is used to perform the interpolation. The interpolation coefficients are stored and the
interpolation can be vectorized on machines with gather-scattered operations.

4.2 Edges and Vertices

An important special case concerns obtaining solution values at points that lie near edges and vertices of grids (or
corners of grids in 2D). Define a boundary edge to be the edge that is formed at the intersection of adjacent faces
of the unit cube where both faces are boundaries of the computational domain. Along a boundary edge, values of
the solution are required at the fictitious points in the region exterior to both boundary faces. For example, suppose

that the edge defined by 41 = 11,4, 2 = N2, and i3 = N34, ...,N3, is a boundary edge. Values must be determined
at the exterior points ¢ = (n1,4 + m,n2 4 + n,i3) for m,n = —2, —1. The following conditions are imposed
9 (v u) = 0 m=1,2 (15)
8rm
ts- DS 12U 1614, = O (16)

Here t3 is the unit vector in the direction of the edge. Recall that Dy 12U; = Uy 41,i41,is — U; and thus the
condition (16) is an extrapolation into the region of the component of the velocity that is parallel to the edge.
Equations (15),(16) supply sufficient information to determine the values of the fictitious points outside the edge, as
will now be shown. By expanding u(—r1,—r2,r3) and u(+r, +r2,73) in a Taylor series about (0,0, 0) it follows that

u(—ry,—r2,r3) = 2u(0,0,r3) —u(ry,rs,73)

1 1
+ §rfurmu(0, 0,73) + rireu,, »,u(0,0,73) + §r§ur2r2u(0, 0,73) + O(|r1|4 + |’f‘2|4) (17)

The derivatives u,,,, and u,,,, are tangential derivatives (on the appropriate face) and can be computed from the
given boundary data. Here it is assumed that the given boundary data are compatible at edges. The mixed derivative
term, u,,,, remains to be determined. When expanded by the chain rule equations (15) can be written as

Z or, 0%y i 8%r, %_
Oz armarn or,,0x; Or,,

for m = 1,2. The only term in these equations that is not known from the boundary data is the mixed derivative
term u,,,,; and thus there are two equations for the three unknown components of u,,,,. To get a third equation for



u,,,, the extrapolation condition (16) is combined with the equation formed when the tangent vector ts is dotted
into (17) (with ry = —Ary, 72 = —Ary). After solving for u,,,, (17) gives a fourth order accurate approximation to
the 4 solution values that lie outside the boundary edge.

In two space dimensions, the values outside a corner are determined in a similar manner, although the extrapo-
lation condition is not required.

At a vertex in 3D it follows from Taylor series that

u(=r) = 2u(0) ~ u(®) + Y rr 5o (0) + O(e})

All of the second order derivatives u,, ., are tangential derivatives on one of the faces that meets at the vertex and
thus are known in terms of the given boundary values. Thus the value of U; at the 8 points which lie outside a
vertex can be computed.

4.3 Solving the numerical boundary equations

The numerical boundary conditions (7) define the values of U on two lines of fictitious points in terms of values of
the velocity on the boundary and the interior. The equations couple the unknowns in the tangential direction to the
boundary so that in principle a system of equations for all boundary points must be solved. However, when the grid
is nearly orthogonal to the boundary there is a much more efficient way to solve the boundary conditions. The first
step in the algorithm is to solve for the tangential components of the velocity from

Uz(t) —uB(xi,t) == O .
- {£UL0) + (Ui(0) - V) Us() + VaP* (1) — vAUi(1) = £} = 0 for i € Boundary
t, - DS, (Ui(t)) = 0}  forie Second fictitious line

If the grid is orthogonal to the boundary then the discrete Laplacian applied at boundary will not have any mixed
derivative terms. Therefore the only fictitious points appearing in the equation applied at the the boundary point
(i1,12,43) will be the two points (i1,42,i3 —n) n = 1,2 (here we assume that i3 is in the normal direction to the
boundary). Thus for each point on the boundary (i1,42,%3) the values of t, - u can be determined at the fictitious
points (i1,42,43 — 1) and (i1, 42,43 — 2). There is no coupling between adjacent boundary points so no large system of
equations need be solved. The tangential components of the velocity are determined for all fictitious points on the
entire boundary. The second step is to determine the the normal component of the velocity at the fictitious points
from

Ul(t) —uB(xi,t) = 0
Vi-Ui(t) = 0 for i € Boundary
Dyn(Vy-Ui(t)) = 0

If the grid is orthogonal to the boundary then the divergence on the boundary can be written in the form

1 ) o 9
V-u orescs {6n(ezegn u) + o, (eresty -u) + % (ereats u)}

where the e, are functions of 0x/dr. Note that only normal derivatives of n - u appear in the expression for the
divergence. Thus, at a boundary point, (i1,%2,%3), the stencil for V4 - U will only involve the fictitious points at
(1,192,493 — n), n = 1,2. Similarly, the stencil for D4,(V4 - U) at a boundary will only involve the fictitious points
at (i1,42,43 —n), n = 1,2. Thus there is no coupling between adjacent boundary points and the unknown values for
n - u can be easily determined. Note that the equations for D4, (V4 - U) will couple values for t, - u at fictitious
points along the boundary but these values have already been determined in the first step.

In practice the boundary conditions are solved in a correction mode — some initial guess is assumed for the values
at the fictitious points and a correction is computed. If the grid is orthogonal or nearly orthogonal to the boundary
then the first correction will give an accurate answer to the boundary conditions. If the grid is not orthogonal to
the boundary then the solution procedure can repeated one or more times until a desired accuracy is achieved. This
iteration should converge quickly provided that the grid is not overly skewed.



4.4 Discrete Divergence

The discrete divergence §; = V4 - U; will not be identically zero for the scheme described in this paper. By applying
the operator V4- to the momentum equations it follows that ¢; will satisfy

%5,' + (U; - V4)d; —vA46; = D; fori € the interior
0; = 0 fori € on the boundary
Dy,6; = 0 for i € on the boundary

where .
d
Di = {V4 (Ui - Va)Ui) = (Ui - Va)di = Y VUi - D4szi} + {A4P,- ~ V- (vm)} :
m=1
The discrete divergence will be non-zero due to the presence of the forcing term D;, which will be O(h*) when the
solution is smoothly represtented on the grid. The interpolation conditions can also act as source terms for the
discrete divergence.

In order to more effectively damp out any non-zero divergence, a term proportional to d; can be added to the
pressure equation:

A4P + ZV4Um,i‘D4szi—V4.f_CdUVi (51207

m=1
1 1 1
Vv, = + + :
¢ Amii Amg’i Amg’i

This introduces a linear damping term in the equation for the divergence,

%(5, + (Uz . V4)6z —vAL; =D; —Caqv V; §; .

This technique of adding a damping term is well known and has been used previously by a number of researchers in
the fields of incompressible flows (the MAC method of Harlow and Welch[12]) and electromagnetics (Marder [23]).
In the projection method and the MAC method, for example, a term proportional to d;/At is added, chosen so that
the velocity field at the new time step is exactly divergence free. Although in the present situation it is not possible
to make the discrete divergence exactly zero, adding such a term does reduce the divergence.

4.5 Compatibility conditions and projecting the initial conditions

The equation V -u = 0 imposes some compatibility constraints on the initial and boundary conditions. For example,
the initial conditions should satisfy V - up = 0. Imposing the divergence free condition up to the boundary implies
that that the normal component of ug should equal the normal component of the velocity specified on the boundary,
n-ug = n- ugg, see [10]. A further constraint follows by integrating V - u over Q and using the Gauss divergence
theorem, giving [, n - uds = 0.

In many cases it may not be easy to generate initial conditions that satisfy the compatibility conditions. It is,
however, well known how to take a given function u; and to project this function so that it is divergence free. This
projection is defined by

u = UI+V¢ xeN
uy = u; xe€oN
Ap = —V-ur xe

n-V¢ = 0 x€090N

The function ug will satisfy V-ug = 0 and n-ug will equal n-uy on the boundary. Note, however, that this projection
does not force the tangential components of ug to be continuous at the boundary.

In the discrete case this projection is easy to compute since the function ¢ satisfies the same equation as the
pressure, but with different data. However, the discrete projection operator does not make the discrete divergence
exactly zero for the same reason that the discrete divergence is not exactly zero in the overall scheme. Thus if the
initial function, uy, is not smooth then it may be necessary to first smooth u; before applying the projection. In
practice a sequence of smoothing and projection steps is applied until the discrete divergence nolonger decreases
significantly.
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5 Numerical results

The method described in this paper has been implemented in a Fortran program called CGINS (standing for Com-
posite Grid Incompressible Navier-Stokes solver) [19]. A single computer program handles both the two-dimensional
and the three-dimensional cases. The elliptic pressure equation is solved using CGES (Composite Grid Equation
Solver) which is a general purpose routine for the solution of PDE boundary value problems [14] or by CGMG [16]
a multigrid solver for overlapping grids. Data structures and memory allocation are managed by the DSK data
structure package [7]. The DSK package enables one to write codes for a general class of overlapping grids such as
those created by the grid construction program CMPGRD [5] [8]. Those readers interested in obtaining a copy of
these programs and the overlapping grid construction program CMPGRD, should contact the author.

Results of some numerical computations in two and three-space dimensions are now presented. The primary
interest of these studies is to show the fourth-order convergence of the spatial discretization. The time step is taken
sufficiently small so that the errors due to the time-stepping are negligible.

5.1 Results in two space dimensions

Twilight-zone flow: Writing and debugging a large code can be difficult. It is helpful to have some exact solutions
so that errors can be measured. In order to generate ezact solutions a very useful technique is to force the equations
so that the solution can be made equal to any given function. True solutions created in this way will be called will be
called twilight-zone flows after Brown [4]. For the initial stages of debugging it is very useful to have a true solution
for which the fourth-order method should be exact. Thus for a rectangular grid a true solution which is a quadratic
polynomial should be computed exactly and any errors in the program can be quickly traced. For the convergence
studies presented here, however, a slightly more complicated true solution is used. In two dimensions the following
twilight-zone flow is chosen

Ugrye (T,Y,1) ( sin?(fx) sin(2fy) cos(2nt) , — sin(2fx) sin?(fy) cos(2nt) )
PTre(®,y,t) = sin(fz)sin(fy) cos(2mt)

In each case a value of v = .05 is chosen. A damping term for the divergence is added to the pressure equation, as
described in section 4.4. The coefficient of the damping is usually taken as Cy = 1.

In table I errors at ¢ = 1. are given for solving the equations on a square with sides of length 1. Indicated are
the maximum errors in u, p and V - u. The divergence is calculated as V4 - U; at all interior and boundary points
although by construction (and in fact) this approximation to the divergence is zero on the boundary. The estimated
convergence rate o, error « h?, is also shown. ¢ is estimated by a least squares fit to the maximum errors given in
the table.

Error in Error in Maximum in
Grid u P V-u
20x20 | 1.2x107% | 4.1x1073 1.2 x 1072
30x30 [25x107* [ 68x107*] 1.2x107°
40%x40 | 79x107° | 21 x107% | 24x10~*
o 3.9 4.0 5.6

Table I: Errors for flow in a square at ¢t = 1., and estimated convergence rate, e o< b, (f = 1, v = .05)

In Table IT the errors are given for solving the problem on a unit square which has been rotated about the origin
by 45 degrees in the clockwise direction. This is a good test as the boundary conditions are expressed in terms of
the normal and tangential components of the equations. The normal and tangential velocities on the boundaries of
this regions are mixtures of 4 and v. The errors are different from the previous example because the true solution
has not been rotated.

In table III errors are given for solving the equations on a region bounded by a circle of radius 1. For this example
a value of f = % is taken in ur which permits a more meaningful comparison to the previous tests as the region
is twice as wide. The composite grid for this domain and contour lines of the computed solution u are shown in
figure (1). For fourth order discretizations two lines of interpolation points are used. The interpolation stencil is

taken as a 5 x 5 square and interpolation is done in the (7, s) coordinates as described earlier in this paper.
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Error in Error in Maximum in
Grid u P V-u
20x20 | 42x1073 [ 71x103 | 21x10°2
30x30 | 74x10%|21x10°%| 14x10°
40x40 | 23x107* [ 6.3x107% | 3.8x10~*
o 4.2 3.5 5.8

Table II: Errors for flow in a rotated square at ¢t = 1., and estimated convergence rate, e < h?, (f

Error in Error in Maximum in
Grid u P V-u
35x35UbB5x11 [ 3.1x1073 | 1.0 x 1072 1.7 x 1072
69 x69U109x21 [ 1.9x10°* [ 6.4x 107" | 88 x 101
o 4.0 4.0 4.3

Table III: Errors for flow in a circle at ¢t = 1., and estimated convergence rate, e o< h?, (f =

5.1.1 Comparison to an exact solution to Stokes equations

The Stokes equations result when the nonlinear terms in the incompressible Navier-Stokes equations are set to zero.
There is a nontrivial exact solution to the Stokes equations for flow between two rotating non-cocentric cylinders
reported in Wannier [28]. This solution is used for code validation in [20]. For flow past a cylinder next to a moving
wall (a limit as the radius of the outer cylinder tends to infinity) this exact solution is

B (A + Fy) k1 kq
w = 2P (51 Bs ) - Fro()
2 _ 2
—,% ((S+2y) - L(Skj v) ) - k% ((S— 2y) + W) -D
Vo= (A Rk - k) —2Ba:y(5,:% ) —2Cwy(5k_§ v

Here the wall, located at y = 0, moves with speed U, the cylinder has radius R and is a distance D from the wall
and

S=VD2—R? | ki =2+ (s+y)?

, ky =22+ (s—9)2

D+S ., D _ (D+9)U
¢= D-S '’ A= _Ulog(G) , B=2 log(G)
(D - S)U U
=92 /7 D=-— F=—..
¢ log(G) v log(G)

In table IV we give the errors on two different overlapping grids for the solution to this steady state problem. In
figure (2) we show the solution (streamlines) on the coarser grid.

Error in Maximum in
Grid u V-u
(27%) U (9x43) | 7.3x107* 8.5 x 1073
(53%) U (17 x85) | 5.6 x 10~° 3.8x10~%
o 3.7 4.5

Table IV: Stokes flow, steady flow past a cylinder near a wall
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5.1.2 Unsteady flow past a cylinder

As a final example in two-space dimensions, results are shown from the computation of the flow past a cylinder.
The cylinder is located at the origin and has radius 4. The computational domain is [z4, T3] X [ya, ys] = [-2.5, 15] x
[-3.5,3.5]. The kinematic viscosity is 155. The initial conditions are a uniform flow of (u,v) = (1,0) that are
projected according to the algorithm described in section 4.5. The top and bottom boundaries are slip walls (n-u =
0,0,(t - u) = 0). Here n is the inward facing unit normal vector and t is the unit tangent vector. The left boundary
is inflow (n-u =1, t -u = 0), and the right boundary outflow (0np = —2v/(% (y5 — ¥4))?). The cylinder has no-slip
boundary conditions (u = 0). The Reynolds number based on the cylinder diameter and a velocity of 1 is R, = 100.
At this Reynolds number the steady symmetric solution is unstable and an unsteady flow develops. The unsteady
flow takes a long time to develop — it is not until time ¢ = 40 that the Kdrman vortex street is clearly visible. See
figures (3-5). The ratio of the maximum divergence to the maximum vorticity was always less than about 3 x 1073.
In table V we give some sample timings for this run.

time/ step | percentage
pressure solve (Yale) 40 27%
interpolation (explicit) .024 2%
2nd order Adams PC .66 43%
boundary conditions 11 ™%
other .32 21%
total 1.5 100%
Total number of grid points = 14, 581
Fourth-order

Table V: Times in seconds for flow past a cylinder, (IBM RS/6000-530)

5.2 Results in three space dimensions

Twilight-zone flow: In three space dimensions the equations are forced so that the true solution is known and
equal to
Uirae(@,2,8) = sin(fz) cos(fy) cos(f2) cos(2mt) ,
(fz)sin(fy) (
—2cos(fx) cos(fy) sin(fz) cos(2nt) ) ,
Prrue(2,Y,2,t) = sin(fz)sin(fy)sin(fz) cos(2mt) .

COS

In table VI results are shown for flow in the unit cube with Dirichlet boundary conditions on all walls.

Error in Error in Maximum in

Grid u p V-u

205 [ 9.6x107° | 7.6 x 10~ 89 x 10~*

30° [ 1.7x10° ] 1.3x10°*% 9.8 x10°°
o 4.3 4.4 5.4

Table VI: Errors for flow in a cube at ¢t = 1., and estimated convergence rate, e < h?, (f =1, v = .05)

In table VII results are shown for computations on a spherical shell. The spherical shell is the domain outside a
sphere of radius Ry = % and inside a a concentric sphere of radius R; = 1. The grid for this region was created using
two component grids; one component grid covers the top half of the domain and the second grid covers the bottom
half.

13



Error in Error in Maximum in
Grid u p V-u
252 x7U252x7 [ 11x1073|3.8x103| 2.6x 1073
377 x10U37™x10 | 22x10% | 7.0x10°% ] 48x10°*
492 x 13U49> x 13 [ 73x10° [ 22x107% | 1.7x107°¢
o 4.0 4.2 4.2

Table VII: Errors for flow in a spherical shell at ¢ = .5, and estimated convergence rate, e < h?, (f = %, v =.05)

5.2.1 Flow past a sphere

As a final example we show the flow past a sphere in a channel. The sphere has radius 1 with centre at (0,0,0). The
channel is the domain [z4,Ts] X [Ya,Ys] X [2a, 2] = [—2-2,2.2]3. The overlapping grid consists of three component
grids; two patches cover the sphere and one rectangular grid fills the channel. The number of grid points on each
grid is (35%) U (252 x 9) U (25? x 9) and there are a total of 47,550 active grid points. The initial conditions are
a uniform flow of u = (1,0,0) that are projected according to the algorithm described in section 4.5. The velocity
is specified as inflow on the z = z, face of the channel (u = (1,0,0)), the side walls have slip boundary conditions
(n-u = 0,0,(t, -u) = 0), and face 2 = x; is outflow ({50,p + p = given). The surface of the sphere has no-slip
boundary conditions (u = 0). The pressure equation was solved with GMRES. Figure (6) shows contours of u; on
some planes that pass through the computational domain. Table VIII gives timings for this run. Since the grid is
quite coarse, the number of interpolation points (10,728) is a high percentage of the total number of points. This
explains why the interpolation takes so much time. Similarly, the relative number of boundary points is large in this
run and so the time taken to apply boundary conditions is also large.

time/step | percentage
pressure solve (GMRES) 7.7 28%
interpolation (implicit) 5.9 21%
2nd order Adams PC 8.2 30%
boundary conditions 5.1 18%
other 1 3%
total 27. 100%
Total number of grid points = 47, 550
Fourth-order

Table VIII: Times in seconds for flow past a sphere, (IBM RS/6000-530)
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Incompressible Navier—Stokes , u
t = 1.00 dt = 0.42E-02 nu =.05000
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Figure 1: Twilight-zone flow in a circle, overlapping grid and contours of u;
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Incompressible Navier—Stokes , (u,v)
t = 050 dt = 0.51E-03 nu =.05000

Figure 2: Stokes flow past a cylinder near a moving wall, streamlines



Incompressible Navier—Stokes , u
t = 50.00 dt = 0.36E—02 nu =.01000

LO= —-0.24E+00 HI= 0.15E+01 INC= 0.86E-01

Figure 3: Flow past a cylinder, horizontal velocity
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Incompressible Navier—Stokes , vorz
t = 50.00 dt = 0.36E—02 nu =.01000

LO= —0.25E+01 HI= 0.25E+01 INC= 0.25E+00

Figure 4: Flow past a cylinder, vorticity, max=26, min=-—26.
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Figure 5: Overlapping grid near the cylinder with contours of u
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Figure 6: Flow past a sphere
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